(1)

TIJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

On The Binary Quadratic Diophantine Equation

 $x^2 - 7xy + y^2 + 5x = 0$

M.A.Gopalan, S.Vidhyalakshmi, D.Maheswari*

Department of Mathematics, Shrimati Indira Gandhi College, India

matmahes@gmail.com

Abstract

The binary quadratic equation $x^2 - 7xy + y^2 + 5x = 0$ representing hyperbola is considered and analysed for its integer points. A few interesting relations satisfied by x and y are exhibited.

Keywords: binary quadratic, hyperbola, integer solutions **2010 Mathematics Subject Classification** : 11D09.

Introduction

The binary quadratic equation offers an unlimited field for research because of their variety [1-5]. In this context, one may also refer [6-21]. This communication concerns with yet another interesting binary quadratic equation $x^2 - 7xy + y^2 + 5x = 0$ for determining its infinitely many non-zero integral solutions. Also a few interesting relations among the solutions are presented.

Method of analysis

The hyperbola under consideration is

$$x^2 - 7xy + y^2 + 5x = 0$$

To start with, it is seen that (1) is satisfied by the following pairs of integers (1, 1), (-5, 0), (36, 6), (-245, -35). However we have other choices of solutions satisfying (1) and they are illustrated below:

Choice 1:

Considering (1) as a quadratic in x and solving for x, we get

$$x = \frac{1}{2} \left[7y - 5 \pm \sqrt{45y^2 - 70y + 25} \right] \tag{2}$$

Let
$$\bar{\alpha}^2 = 45y^2 - 70y + 25$$
 (3)

Substituting $\alpha = \frac{\beta}{3}$ and $y = \frac{Y+7}{9}$ (4)

n (3), we have
$$\beta^2 = 5Y^2 - 20$$
 (5)

whose least positive solution is $\beta_0 = 5, Y_0 = 3$. Considering the solutions $(\widetilde{\beta_n}, \widetilde{Y_n})$ of the pellian equation $\beta^2 = 5Y^2 + 1$ and applying Brahmagupta lemma between (β_0, Y_0) and $(\widetilde{\beta_n}, \widetilde{Y_n})$, we have

$$\beta_{n+1} = \frac{5f}{2} + \frac{3\sqrt{5}g}{2}, \qquad Y_{n+1} = \frac{3f}{2} + \frac{\sqrt{5}g}{2}$$
(6)
where $f = (9 + 4\sqrt{5})^{n+1} + (9 - 4\sqrt{5})^{n+1}$ and
 $g = (9 + 4\sqrt{5})^{n+1} - (9 - 4\sqrt{5})^{n+1}$, $n = 0, 1, 2, ...,$

Substituting (4) and (6) in (2) and taking the positive sign, the corresponding integer solutions to (1) are given

by $x_{4k+1} = F + \frac{4\sqrt{5}}{9}G + \frac{2}{9}, y_{4k+1} = \frac{1}{6}F + \frac{\sqrt{5}}{18}G + \frac{7}{9}$ where $F = (9 + 4\sqrt{5})^{4k+1} + (9 - 4\sqrt{5})^{4k+1}$ and $G = (9 + 4\sqrt{5})^{4k+1} - (9 - 4\sqrt{5})^{4k+1}, k = 0, 1, 2, 3,$

 $G = (9 + 4\sqrt{5})^{4k+1} - (9 - 4\sqrt{5})^{4k+1}$, k = 0, 1, 2, 3, The recurrence relations satisfied by x and y are given by

$$x_{4k+9} = 103682x_{4k+5} - x_{4k+1} - 23040; \ x_1 = 36, \qquad x_5 = 3709476$$

$$y_{4k+9} = 103682y_{4k+5} - y_{4k+1} - 80640; y_1 = 6, y_5 = 541206$$

Some numerical examples of x and y satisfying (1) are given in the following table:

http://www.ijesrt.com

k	x_{4k+1}	y_{4k+1}
0	36	6
1	3709476	541206
2	384605867556	56113239846
3	39876705556208676	5817932933091126

Properties:

- 1. $2860299x_{4k+1} 27x_{4k+5} 417312y_{4k+1} = 311040$
- 2. $103361x_{4k+1} 1597547616y_{4k+5} + 233079055x_{4k+5} + 1190718720 = 0$
- 3. $139104x_{4k+1} 20295y_{4k+1} 9y_{4k+5} = 15120$
- 4. $105937y_{4k+5} y_{4k+1} 15456x_{4k+5} = 78960$
- 5. $98853840297x_{4k+1} 9x_{4k+9} 14422580928y_{4k+1} = 10749957120$

Also taking the negative sign in (2), the other set of solutions to (1) is given by

$$x_{4k+1} = \frac{1}{6}F - \frac{\sqrt{5}}{18}G + \frac{2}{9}, \qquad y_{4k+1} = \frac{1}{6}F + \frac{\sqrt{5}}{18}G + \frac{7}{9}$$

where $F = (9 + 4\sqrt{5})^{4k+1} + (9 - 4\sqrt{5})^{4k+1}$ and
 $G = (9 + 4\sqrt{5})^{4k+1} - (9 - 4\sqrt{5})^{4k+1}, \quad k = 0, 1, 2, 3, \dots$

Properties:

1. $15456x_{4k+1} - 105937y_{4k+1} + y_{4k+5} + 78960 = 0$

2. $40590x_{4k+1} + 18x_{4k+5} - 278208y_{4k+1} + 207360 = 0$

Choice 2:

Consider (1) as a quadratic in y and solve for y. Performing the analysis similar to the above choice 1, the corresponding two sets of solutions to (1) along with the properties are presented below:

Set 1:

 $x_{4k+3} = \frac{1}{6}F + \frac{\sqrt{5}}{18}G + \frac{2}{9}, \ y_{4k+3} = F + \frac{4\sqrt{5}}{9}G + \frac{7}{9}$ where $F = (9 + 4\sqrt{5})^{4k+3} + (9 - 4\sqrt{5})^{4k+3}$ and $G = (9 + 4\sqrt{5})^{4k+3} - (9 - 4\sqrt{5})^{4k+3}, \quad k = 0, 1, 2, 3, \dots$

Properties:

1. $x_{4k+7} + 2255x_{4k+3} - 15456y_{4k+3} + 11520 = 0$ 2. $15456x_{4k+3} - 105937y_{4k+3} + y_{4k+7} + 78960 = 0$

Set 2:

$$x_{4k+3} = \frac{1}{6}F + \frac{\sqrt{5}}{18}G + \frac{2}{9}, \ y_{4k+3} = \frac{1}{6}F - \frac{\sqrt{5}}{18}G + \frac{7}{9}$$

where $F = (9 + 4\sqrt{5})^{4k+3} + (9 - 4\sqrt{5})^{4k+3}$ and
 $G = (9 + 4\sqrt{5})^{4k+3} - (9 - 4\sqrt{5})^{4k+3}, \ k = 0, 1, 2, 3,$

Properties:

1. $x_{4k+7} - 105937x_{4k+3} + 15456y_{4k+3} + 11520 = 0$ 2. $y_{4k+7} + 2255y_{4k+3} - 15456x_{4k+3} + 1680 = 0$

In addition to the above two choices of solutions, we have an another pattern as shown below: Introducing the linear transformations x = u + v, y = u - v(7)

http://www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology [194]

in (1), it is written as $Y^2 = 45X^2 - 20$ where X = 2u - 1, Y = 18v + 5The smallest positive integer solution of (8) is $X_0 = 1$, $Y_0 = 5$. Let $(\widetilde{X_n}, \widetilde{Y_n})$ be the general solution of the pellian equation $Y^2 = 45X^2 + 1$ where $\widetilde{X_n} = \frac{1}{2} \left[(161 + 24\sqrt{45})^{n+1} - (161 - 24\sqrt{45})^{n+1} \right]$

here
$$X_n = \frac{1}{2\sqrt{45}} \left[(161 + 24\sqrt{45})^{n+1} - (161 - 24\sqrt{45})^{n+1} \right]$$

 $\widetilde{Y_n} = \frac{1}{2} \left[(161 + 24\sqrt{45})^{n+1} + (161 - 24\sqrt{45})^{n+1} \right]$

Applying the lemma of Brahmagupta between the solutions (X_0, Y_0) and $(\widetilde{X_n}, \widetilde{Y_n})$, the values of X and Y satisfying (8) are given by

$$X_{n+1} = X_0 \widetilde{Y_n} + Y_0 \widetilde{X_n}$$

$$Y_{n+1} = Y_0 \widetilde{Y_n} + 45 X_0 \widetilde{X_n}$$

In view of (7) and (9), the values of x and y are given by

$$x_{n+1} = \frac{1}{9} [45 \widetilde{X_n} + 7 \widetilde{Y_n} + 2]$$

$$y_{n+1} = \frac{1}{9} [2 \widetilde{Y_n} + 7]$$

Note that the value of x and y are integers when n+1 is even. Thus, the integer values of x and y satisfying (1) are represented by

$$x_{2n} = \frac{7}{18}f + \frac{5}{2\sqrt{45}}g + \frac{2}{9}, \ y_{2n} = \frac{1}{9}f + \frac{7}{9}$$

where $f = (161 + 24\sqrt{45})^{2n} + (161 - 24\sqrt{45})^{2n}$
 $g = (161 + 24\sqrt{45})^{2n} - (161 - 24\sqrt{45})^{2n}$

Conclusion

As the binary quadratic equations representing hyperbolas are rich in variety, one may consider other forms of hyperbolas and search for their non-trivial distinct integral solutions along with the corresponding properties.

References

- 1. L.E.Dickson, History of Theory of numbers, Vol.2, Chelsea Publishing company, New York, 1952
- 2. L.J.Mordell, Diophantine Equations, Academic Press, London, 196
- 3. Andre weil, Number Theory : An approach through history:from hammurapi to legendre \ Andre weil:Boston (Birkahasuser boston),198
- 4. Nigel P.Smart, the algorithmic Resolutions of Diophantine equations Cambridge university press, 199
- 5. Smith D.E, History of mathematics Vol.I and II, Dover publicationsNew York 195
- 6. Gopalan M. A, Vidyalakshmi S, and Devibala S,"On the Diophantine equation $3x^2 + xy = 14$ ", Acta Ciencia Indica, Vol. XXXIIIM, No.2, pg.645-646,200
- 7. Gopalan M.A, and Janaki.G," Observations on $Y^2 = 3X^2 + 1$ ", Acta ciencia Indica, Vol XXXIVM, No.2,693(2008)
- 8. Gopalan M.A, and Vijayalakshmi.R, "Special Pythagorean triangles generated through the integral solutions of the equation $y^2 = (K^2 + 1)x^2 + 1$ ", nAntarctica J.Math,7(5),pg.503-507(2010)
- 9. Gopalan M.A, and Sivagami. B, "Observations on the integral solutions of $y^2 = 7x^2 + 1$ ", Antarctica J.Math7(3),pg.291-296 (2010)
- 10. Gopalan M.A amd Vijayalakshmi.R, "Observation on the integral solutions of $y^2 = 5x^2 + 1$ ", Impact J.Sci.Tech, Vol.4,N0.4,125 -129,2010
- 11. Gopalan.M.A, and Sangeetha .G, "A remarkable observation on $y^2 = 10x^2 + 1$ ", Impact J.Sci.Tech., Vol.4, No.1,103-106,201

http://www.ijesrt.com

(C)International Journal of Engineering Sciences & Research Technology [195]

- 12. Gopalan M. A, Parvathy. G, "Integral points on the Hyperbola $x^2 + 4xy + y^2 2x 10y + 24 = 0$ ", Antarctica J.Math,7(2),pg149-155,2010
- 13. Gopalan M. A, Palanikumar R,"Observations on $y^2 = 12x^2 + 1$ " Antarctica J.Math,8(2),pg.149-152, 201
- 14. Gopalan M. A, Devibala S, Vijayalakshmi R,"Integral points on the hyperbola $2x^2 3y^2 = 5$ ", American journal of Applied Mathematics and Mathematical Sciences, Vol 1, No 1, pg. 1-4, Jan-June 201
- 15. Gopalan M. A, Vidyalakshmi. S, Usha Rani T.R, Mallika S, "Observations on $y^2 = 12x^2 3$ ", Bessel J.Math2(3),pg. 153-158, 201
- 16. Gopalan M. A, Vidyalakshmi. S, Sumathi G, Lakshmi K,"Integral Points on the Hyperbola $x^2 + 6xy + y^2 + 40x + 8y + 40 = 0$ ", Bessel J. Math.2(3) pg. 159-164,201
- 17. Gopalan M. A, Geetha K, "Observations on the Hyperbola $y^2 = 18x^2 + 1$ ", Retell, Vol.13, No.1, pg. 81-83, Nov. 201 Gopalan M. A, Sangeetha G, Manju Somanath, "Integral points on the Hyperbola $(a+2)x^2 - ay^2 = 4a(k-1) + 2k^2$ ", Indian Journal of Science, Vol.1, N0.2pg. 125-126, Dec. 201
- 18. Gopalan M. A, Vidyalakshmi S, Kavitha A, "Observations on the Hyperbola $ax^2 (a+1)y^2 = 3a-1$ ", Discovery, Vol.4, N0.10, pg.22-24, April.201
- 19. Gopalan M. A, et al., Integer points on the Hyperbola $x^2 6xy + y^2 + 4x = 0$ " Scj.J.Eng.Tech., Vol.2, No.1, pg.14-18, 2014
- 20. Dr.K.Meena, et al, "On the binary quadratic Diophantine equation $x^2 5xy + y^2 + 18x = 0$ ", International Journal of Engineering Research- Online, Vol.2, NO.3, pg.9-14, 2014