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Abstract 
The binary quadratic equation 𝑥2 − 7𝑥𝑦 + 𝑦2 + 5𝑥 = 0 representing hyperbola is considered and analysed 

for its integer points. A few interesting relations satisfied by x and y are exhibited. 
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Introduction
  The binary quadratic equation offers an unlimited field for research because of their variety [1-5]. In this 

context, one may also refer [6-21]. This communication concerns with yet another interesting binary quadratic 

equation  𝑥2 − 7𝑥𝑦 + 𝑦2 + 5𝑥 = 0 for determining its infinitely many non-zero integral solutions. Also a few 

interesting relations among the solutions are presented. 

 

Method of analysis 
The hyperbola under consideration is    

                            𝑥2 − 7𝑥𝑦 + 𝑦2 + 5𝑥 = 0                                                                                                    (1)                                                                                                    

To start with, it is seen that (1) is satisfied by the following pairs of integers (1, 1), (-5, 0), (36, 6),                      

(-245, -35). However we have other choices of solutions satisfying (1) and they are illustrated below: 

Choice 1: 

Considering (1) as a quadratic in x and solving for x, we get 

𝑥 =
1

2
[7𝑦 − 5 ± √45𝑦2 − 70𝑦 + 25]                                                                                                          (2) 

Let 𝛼2 = 45𝑦2 − 70𝑦 + 25                                                                                                                          (3) 

Substituting 𝛼 =
𝛽

3
  and 𝑦 =

𝑌+7

9
                                                                                                                    (4) 

in (3), we have        𝛽2 = 5𝑌2 − 20                                                                                                              (5) 

whose least positive solution is 𝛽0 = 5, 𝑌0 = 3.  Considering the solutions (𝛽𝑛 ,̃ 𝑌𝑛̃)  of the pellian equation    

𝛽2 = 5𝑌2 + 1  and applying Brahmagupta lemma between (𝛽0, 𝑌0)  and  (𝛽𝑛 ,̃ 𝑌𝑛̃),  we have   

𝛽𝑛+1 =
5𝑓

2
+

3√5𝑔

2
,        𝑌𝑛+1 =

3𝑓

2
+

√5𝑔

2
                                                                                                        (6) 

 where 𝑓 = (9 + 4√5 )𝑛+1 + (9 − 4√5)𝑛+1  and  

             𝑔 = (9 + 4√5)𝑛+1 − (9 − 4√5)𝑛+1 , n = 0, 1, 2, …. 

Substituting (4) and (6) in (2) and taking the positive sign, the corresponding integer solutions to (1) are given 

by     𝑥4𝑘+1 = 𝐹 +
4√5

9
𝐺 +

2

9
, 𝑦4𝑘+1 =

1

6
𝐹 +

√5

18
𝐺 +

7

9
 

where  𝐹 = (9 + 4√5 )4𝑘+1 + (9 − 4√5)4𝑘+1  and 

             G= (9 + 4√5)4𝑘+1 − (9 − 4√5)4𝑘+1 ,     k = 0, 1, 2, 3, ….    

The recurrence relations satisfied by x and y are given by 

𝑥4𝑘+9 = 103682𝑥4𝑘+5 − 𝑥4𝑘+1 − 23040;  𝑥1 = 36, 𝑥5 = 3709476 

𝑦4𝑘+9 = 103682𝑦4𝑘+5 − 𝑦4𝑘+1 − 80640;  𝑦1 = 6, 𝑦5 = 541206 
Some numerical examples of x and y satisfying (1) are given in the following table: 
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k 𝑥4𝑘+1 𝑦4𝑘+1 

0 36 6 

1 3709476 541206 

2 384605867556 56113239846 

3 39876705556208676 5817932933091126 

 

 

 Properties: 

1. 2860299𝑥4𝑘+1 − 27𝑥4𝑘+5 − 417312𝑦4𝑘+1 = 311040 

2. 103361𝑥4𝑘+1 − 1597547616𝑦4𝑘+5 + 233079055𝑥4𝑘+5 + 1190718720 = 0 

3. 139104𝑥4𝑘+1 − 20295𝑦4𝑘+1 − 9𝑦4𝑘+5 = 15120 

4. 105937𝑦4𝑘+5 − 𝑦4𝑘+1 − 15456𝑥4𝑘+5 = 78960  

5. 98853840297𝑥4𝑘+1 − 9𝑥4𝑘+9 − 14422580928𝑦4𝑘+1 = 10749957120 

 

Also taking the negative sign in (2), the other set of solutions to (1) is given by 

𝑥4𝑘+1 =
1

6
𝐹 −

√5

18
𝐺 +

2

9
, 𝑦4𝑘+1 =

1

6
𝐹 +

√5

18
𝐺 +

7

9
 

where  𝐹 = (9 + 4√5 )4𝑘+1 + (9 − 4√5)4𝑘+1  and 

           𝐺 = (9 + 4√5)4𝑘+1 − (9 − 4√5)4𝑘+1 ,     k = 0, 1, 2, 3, ….    

Properties: 

1. 15456𝑥4𝑘+1 − 105937𝑦4𝑘+1 + 𝑦4𝑘+5 + 78960 = 0 

2. 40590𝑥4𝑘+1 + 18𝑥4𝑘+5 − 278208𝑦4𝑘+1 + 207360 = 0 

 

Choice 2: 

Consider (1) as a quadratic in y and solve for y. Performing the analysis similar to the above choice 1, the 

corresponding two sets of solutions to (1) along with the properties are presented below: 

Set 1:   

  𝑥4𝑘+3 =
1

6
𝐹 +

√5

18
𝐺 +

2

9
, 𝑦4𝑘+3 = 𝐹 +

4√5

9
𝐺 +

7

9
 

where  𝐹 = (9 + 4√5 )4𝑘+3 + (9 − 4√5)4𝑘+3  and 

             𝐺 = (9 + 4√5)4𝑘+3 − (9 − 4√5)4𝑘+3 ,     k = 0, 1, 2, 3, ….    

Properties: 

1. 𝑥4𝑘+7 + 2255𝑥4𝑘+3 − 15456𝑦4𝑘+3 + 11520 = 0 

2. 15456𝑥4𝑘+3 − 105937𝑦4𝑘+3 + 𝑦4𝑘+7 + 78960 = 0    

 

Set 2: 

  𝑥4𝑘+3 =
1

6
𝐹 +

√5

18
𝐺 +

2

9
, 𝑦4𝑘+3 =

1

6
𝐹 −

√5

18
𝐺 +

7

9
 

where  𝐹 = (9 + 4√5 )4𝑘+3 + (9 − 4√5)4𝑘+3  and 

             𝐺 = (9 + 4√5)4𝑘+3 − (9 − 4√5)4𝑘+3 ,     k = 0, 1, 2, 3, ….    

Properties: 

1. 𝑥4𝑘+7 − 105937𝑥4𝑘+3 + 15456𝑦4𝑘+3 + 11520 = 0 

2. 𝑦4𝑘+7 + 2255𝑦4𝑘+3 − 15456𝑥4𝑘+3 + 1680 = 0      

 

In addition to the above two choices of solutions, we have an another pattern as shown below:   

Introducing the linear transformations  𝑥 = 𝑢 + 𝑣, 𝑦 = 𝑢 − 𝑣                                                         (7) 
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in (1), it is written as   𝑌2 = 45𝑋2 − 20                                                                                                          (8) 

where   𝑋 = 2𝑢 − 1, 𝑌 = 18𝑣 + 5                                                                                                                 (9) 

The smallest positive integer solution of (8) is  𝑋0 = 1, 𝑌0 = 5. 

Let (𝑋𝑛 ,̃ 𝑌𝑛̃) be the general solution of the pellian equation  𝑌2 = 45𝑋2 + 1 

where   𝑋𝑛̃ =
1

2√45
[(161 + 24√45 )𝑛+1 − (161 − 24√45)𝑛+1] 

               𝑌𝑛̃ =
1

2
[(161 + 24√45 )𝑛+1 + (161 − 24√45)𝑛+1]      

Applying the lemma of Brahmagupta between the solutions  (𝑋0, 𝑌0)  and  (𝑋𝑛,̃ 𝑌𝑛̃), the values of X and Y 

satisfying (8) are given by 

𝑋𝑛+1 = 𝑋0𝑌𝑛̃ + 𝑌0𝑋𝑛̃ 

                                                            𝑌𝑛+1 = 𝑌0𝑌𝑛̃ + 45𝑋0𝑋𝑛̃                                         
In view of (7) and (9), the values of x and y are given by    

𝑥𝑛+1 =
1

9
[45𝑋𝑛̃ + 7𝑌𝑛̃ + 2] 

𝑦𝑛+1 =
1

9
[2𝑌𝑛̃ + 7] 

 

Note that the value of x and y are integers when n+1 is even. Thus, the integer values of x and y 

satisfying (1) are represented by 

                               𝑥2𝑛 =
7

18
𝑓 +

5

2√45
𝑔 +

2

9
, 𝑦2𝑛 =

1

9
𝑓 +

7

9
    

where   𝑓 = (161 + 24√45 )2𝑛 + (161 − 24√45)2𝑛 

             𝑔 = (161 + 24√45 )2𝑛 − (161 − 24√45)2𝑛     
 

 Conclusion 
      As the binary quadratic equations representing hyperbolas are rich in variety, one may consider other forms of 

hyperbolas and search for their non-trivial distinct integral solutions along with the corresponding properties. 
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